Data Science Methodology

a Data Science Methodology structures your project

Getting insights out of the data, that’s what it’s all about in data science. After we have defined the business goal you try to solve, our data scientists jump in, try to get the data and start their process.

element61 has build its own Data Science Methodology in line with the CRISP DM framework. This methodology is  an in-depth and Data Science specific variant of our element61 methodology elementary.

Our Methodology

We adhere to a standard Data Science Methodology including the following steps:

Data Science Methodology


  • Strategy

It's important to us to understand the context and objectives of your project. What business problem are we trying to solve, what has been tried in the past, etc. Additionally, we need to understand what the ambition is: what do we expect from the Machine Learning solution, who will use it and how frequently, how will actionable results be implemented in the existing business processes. Through a series of workshops, we define and document this strategy as a project outline.
  • Data Gathering

We translate the business problem at hand into data and identify the right data sources and fields. We sit with the BI and data teams and jointly define the extraction and load methods we can leverage to get access to the data.

  • Data Discovery

Before building the model, we spend sufficient time on Data Discovery, running various discovery analyses to challenge or confirm our initial hypothesis. We get to know the data, iteratively provide feedback and thus crystalize the case at hand of what we want to predict and how we can best do it. 

  • Machine Learning

In this phase the actual modelling takes place. Our Data Scientists do feature definitions based on our discovery analyses and, run and compare different predictive models, evaluate their performance, fine-tune and rerun. This is an iterative process where we iteratively communicate feedback and performance back to the client.

  • Fine-tuning and testing

The model needs to be relevant and actionable. Therefore, we set up a fine-tune phase where we go, with the business, through the results and where possible even set up a real-life test. Furthermore, we help you to embed the resulting model within your business processes so you can fully leverage the newly created model. Every Proof of Concept delivered by our team results in an actionable working process which can be leveraged for a set of weeks or months providing real added value.

How we use it

All our proposals and projects are built around this methodology.
Based on our experience, this methodology is giving us a structure to tackle the problem step-by-step and to deliver, at every stage of the project, clarification and alignment to the project team.